If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+4x=75
We move all terms to the left:
7x^2+4x-(75)=0
a = 7; b = 4; c = -75;
Δ = b2-4ac
Δ = 42-4·7·(-75)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-46}{2*7}=\frac{-50}{14} =-3+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+46}{2*7}=\frac{42}{14} =3 $
| -3(x-1)+6=8(x-2) | | 15x-52=98 | | 3(e+9)=39 | | 15x-52=180 | | 3x^2-8-19=0 | | 15x-52=82 | | -3(x-1)+6=8(x—2) | | -6p-4=-2(-3p+2) | | 2x+15+4x=645 | | 2b2-b2=100 | | -6+2h=-4 | | 4x^2+2(x+5)=0 | | –x–20=–12 | | 2b^2-b^2=100 | | Y=3x+0-6 | | 4x^2+2(x+5=0 | | 6x-1+7x+13=180 | | 8x-x+9-1=7x-x+7 | | 1/9z=-8 | | (2d)-1=4 | | 2-2g=0 | | -4x+x+10=22 | | 7^x+3=76 | | 1/2x+5/2x+5=20 | | -i-2=-2 | | 4x-9-4x=3-2x-4 | | 23+17+x+x=100 | | -29x-100+39x=0 | | x-8+x+x=16 | | -1-2q=-1 | | 33-x+3x=37 | | 3x-7+7x=83 |